

PRZENOŚNY ANALIZATOR PARAMETRÓW SIECI

NP45

INSTRUKCJA OBSŁUGI

CE

Wstęp

Dzięki zastosowaniu procesorów DSP i architektury ARM oraz wbudowanemu systemowi operacyjnemu (uClinux), analizator parametrów sieci NP45 jest w stanie obliczyć dużą liczbę parametrów elektrycznych. Urządzenie oferuje rozbudowane i wydajne funkcje pomiarowe w celu sprawdzenia systemu dystrybucji energii, dzięki czemu można szybko i wygodnie wykrywać jakość sieci elektrycznej i charakterystyki elektryczne. Analizator posiada kolorowy wyświetlacz LCD o dużym ekranie i łatwą w użyciu klawiaturę.

Główne cechy:

- Wyświetlacz wykresu kształtu przebiegu czasu rzeczywistego (4 napięcia/4 prądy)
- Pomiar RMS połowy cyklu (napięcie i prąd)
- Intuicyjna obsługa
- Szeroki zakres opcjonalnych zacisków prądowych
- Element pomiaru prądu stałego
- Pomiar i wyświetlanie składowych harmonicznych do 100 razy.
- Zapis stanów przejściowych
- Wyświetlanie wektorów, trendów, wykresów słupkowych i tablicy zdarzeń
- Moc czynna, moc bierna, moc i energia pozorna, współczynnik przesunięcia mocy i współczynnik mocy faktycznej
- Asymetria trójfazowa (napięcie i prąd)
- Migotanie
- Prąd rozruchowy
- Wykrywanie i zapisywanie skoków i spadków napięcia, gwałtownych zmian napięcia oraz przerywania.
- Wykrywanie zgodne z normą EN50160 bądź sieci z limitem definiowanym przez użytkownika.
- przechowywanie danych i zrzutów ekranu (możliwe wyświetlanie lub transfer do komputera)
- Dzięki interfejsowi LAN możliwa jest zdalna komunikacja w czasie rzeczywistym analizatora z komputerem, zdalne sterowanie analizatorem oraz odczyt wartości pomiaru.
- Wbudowana karta pamięci 32G.
- Obsługa komunikacji WIFI.

Analizator i jego akcesoria

ullet	Analizator parametrów sieci NP 45	1
●	CD (Oprogramowanie komputerowe + instrukcja)	1
●	Przewody do pomiaru napięcia	5
ullet	Zaciski krokodylkowe	5
ullet	Zasilacz	1
ullet	Przewód zasilający	1
ullet	Torba	1
ullet	Pasek	1

Wyposażenie dodatkowe Przekładni prądowy AC

- KLC8C-5A (5A)
- CTC0080 (50A)
- CTC0130 (100Å)
- CTC1535 (1000Å)

cewka Rogowskiego AC

- SY-1500A (1500A)
- PY-3000A (3000A)
- PY-5000A (5000A)
- SY-6000A (6000A)

Przekładnik prądowy AC/DC

• ETCR035AD (1000A)

Ogólne informacje o bezpieczeństwie

Analizator został zaprojektowany i wykonany w ścisłej zgodności z normą IEC61010-1 i zachowuje zgodność z kategoriami instalacji CAT III 1000 V i CAT IV 600 V oraz ze stopniem zanieczyszczeń II. Zapoznanie się z poniższymi uwagami i ostrzeżeniami pozwoli uniknąć obrażeń oraz uszkodzeń analizatora bądź podłączonych do niego urządzeń.

Aby zapobiec pożarowi lub porażeniu prądem należy:

- Uważnie zapoznać się z instrukcją przed rozpoczęciem pracy z analizatorem i jego akcesoriami.
- Przeczytać uważnie wszystkie polecenia.
- Unikać pracy bez asysty.
- Unikać stosowania analizatora w pobliżu wybuchowych gazów, pary bądź wilgoci.
- Wykorzystywać analizator w sposób przewidziany w instrukcji, aby zapewnić optymalną ochronę.
- Korzystać wyłącznie z izolowanych sond prądowych, testowych przyłączy i adapterów dostarczonych z analizatorem bądź opisanych jako kompatybilne z analizatorem.
- Palce należy trzymać wyłącznie za osłonami, w które wyposażone są sondy.
- Przed użyciem należy sprawdzić analizator, sondy napięcia, przyłącza testowe i akcesoria pod kątem uszkodzeń i wymienić uszkodzone elementy. Należy sprawdzić, czy nie występują pęknięcia bądź ubytki tworzyw sztucznych. Szczególną uwagę należy zwrócić na izolację w sąsiedztwie styków.
- Działanie analizatora należy sprawdzić mierząc napięcie o znanej wartości.
- Należy odłączyć wszystkie sondy, przyłącza i akcesoria, które nie są używane.
- Zasilacz zawsze należy podłączyć do sieci przed podłączeniem do niego analizatora.
- Nie należy dotykać elementów pod wysokim napięciem: napięcie >AC RMS 30V, lub DC 60V.
- Wejścia uziemienia należy używać wyłącznie do uziemiania analizatora i nie należy podłączać do niego żadnego napięcia.
- Nie należy podłączać analizatora do napięcia przewyższającego dopuszczalne.
- W czasie pomiarów należy używać wyłącznie prawidłowej kategorii pomiarów (CAT), właściwych sond napięciowych i prądowych, przyłącza testowego i zasilacza.
- Nie należy mierzyć napięcia przekraczającego zakres działania sond lub zacisków.
- Należy zawsze przestrzegać lokalnych i krajowych norm bezpieczeństwa. W niebezpiecznym środowisku, w którym

przewody pod napięciem są odsłonięte, należy stosować środki ochrony osobistej, takie jak zatwierdzone rękawice gumowe, ochronę twarzy i odzież ognioodporną, aby zapobiec porażeniu prądem elektrycznym i wyładowaniom łukowym.

- Szczególną uwagę należy zachować podczas podłączania bądź rozłączania elastycznych sond prądowych: należy wyłączyć testowane urządzenie lub założyć specjalistyczną odzież ochronną.
- Nie należy umieszczać elementów metalowych w stykach.
- Należy zawsze używać zasilacza dostarczonego z analizatorem.

Analizator i jego akcesoria	2
Wyposażenie dodatkowe	2
cewka Rogowskiego AC	2
Ogólne informacje o bezpieczeństwie	3
Rozdział 1 Wprowadzenie	7
1.1 Budowa analizatora	7
1.2 Opis działania przycisków	8
1.3 Podłączenia wejściowe	9
1.4 Szybkie omówienie trybów pomiaru	10
1.5 Ekran i przyciski funkcji	11
Rozdział 2 Podstawowe działania	12
2.1 Podstawka i pasek	12
2.2 Włączanie i wyłączanie	13
2.3 Jasność ekranu	13
2.4 Aktualizacja oprogramowania wbudowanego	13
2.5 Podłączenia wejściowe	14
2.6 Ustawienia użytkownika	15
2.7 Konfigurowanie analizatora	16
2.8 Korzystanie z pamięci i komputera	17
Rozdział 3 Przykładowe zastosowania	22
3.1 Zakres	22
3.2 Napięcie/Prąd/Częstotliwość	22
3.3 Zapady i przepięcia	24
3.4 Harmoniczne	27
3.5 Moc i energia	29
3.6 Migotanie	31
3.7 Asymetria	32
3.8 Stany nieustalone	34
3.9 Prąd rozruchowy	35

3.10 Zapis przebiegu	37
3.11 Rejestrator	37
3.12 Monitorowanie	39
Rozdział 4 Serwis i wsparcie	45
4.1 Gwarancja	45
Rozdział 5 Specyfikacje	46
5.1 Pomiar częstotliwości	46
5.2 Wejście napięciowe	46
5.3 Wejście prądowe	46
5.4 Układ próbkowania	46
5.5 Tryby i parametry pomiaru	46
5.6 Zakres, rozdzielczość i dokładność pomiaru	47
5.7 Kombinacje okablowania	50
5.8 Cechy ogólne	50
5.9 Specyfikacja opcjonalnych sond prądowych	52
Rozdział 6 Kod wykonania	.53

Uwaga: Treść niniejszego dokumentu może ulec zmianie bez uprzedniego powiadomienia.

Niniejszy dokument może zawierać nieścisłości techniczne bądź błędy drukarskie. Niniejszy dokument zawiera jedynie wskazania dotyczące użytkowania urządzenia i nie stanowi żadnej formy gwarancji.

6

Rozdział 1 Wprowadzenie

Za pośrednictwem tego rozdziału użytkownik może nauczyć się podstawowej obsługi urządzenia.

1.1 Budowa analizatora

- 1: wyświetlacz
- 2: klawiatura
- 3: wskaźnik ładowania
- 4: wejście napięciowe
- 5: wejście sondy prądowej
- 6: wejście uziemienia
- 7: interfejs adaptera mocy
- 8: interfejs odbiornika GPS/BEIDOU
- 9: Interfejs USB-Host
- **10**: interfejs LAN

1.2 Opis działania przycisków						
1. Włączenie/ wyłączenie zasilania.						
	2. Obowiązkowe wyłączenie					
	zasilania: gdy zasilanie jest					
O	włączone, naciśnij ten przycisk na					
	około 10 sekund, analizator zostanie					
	wyłączony.					
	Regulacja jasności: Naciśnij ten					
	przycisk kilka razy, aby dostosować					
	jasność ekranu.					
	Przycisk funkcyjny: określona					
F1 🔨 F5	funkcja wyświetlana na pasku menu					
	na ekranie.					
	Przycisk kierunkowy: umożliwia					
	przesuwanie kursora i powiększanie					
	widoku fali					
	Przycisk wpisywania: naciśnij ten					
	przycisk, aby potwierdzić bieżący					
	wybór					
	Przycisk skrótu oscyloskopu: szybki					
SCOPE	dostęp do funkcji oscyloskopu.					
	Przycisk skrótu w menu głównym:					
MENU	szybki dostep do interfeisu menu					
	głównego.					
	Przycisk funkcji monitorowania:					
MONITOR	umożliwia wejście w funkcję					
	monitorowania.					
	Przycisk skrótu do konfiguracji					
SETUP	parametrów: szybki dostęp do					
	interfejsu konfiguracji parametrów.					
	Przycisk zarządzania plikami:					
MEMORY	umożliwia wejście do interfejsu					
	zarządzania plikami.					
	Przycisk zapisu: w trybie pomiaru					
SAVE	naciśnij ten przycisk, aby zachować					
	zrzut ekranu i dane pomiarowe.					
	Wskaźnik ładowania: czerwony:					
	wciąż w trakcie ładowania					
	zielony: w pełni naładowany					
W poniższym tekście, znak [*] odpowiada danemu						

przyciskowi.

Ładowanie baterii i przygotowanie do pracy

Po dostarczeniu urządzenia, jego wbudowany akumulator może być rozładowany, zatem zaleca się jego naładowanie przed uruchomieniem. Pierwsze ładowanie powinno trwać co najmniej 6 godzin; Kiedy kolor diody ładowania zmienia się z czerwonego na zielony, oznacza to, że akumulator jest w pełni naładowany. Analizator automatycznie odcina ładowanie baterii po pełnym naładowaniu akumulatora. Przed użyciem zasilacza należy sprawdzić, czy jego roboczy zakres napięcia i częstotliwości zasilania odpowiada parametrom lokalnej sieci elektrycznej. Aby zapobiec spadkowi pojemności akumulatora, należy ładować go co najmniej dwa razy w roku.

lkona na pasku wskaźnika stanu					
	Wskaźnik pojemności akumulatora, zielony oznacza wystarczające naładowanie, kolor czerwony oznacza niski poziom.				
	Wskaźnik ładowania.				
N	Ładowanie zakończone.				
*	Dysk USB jest podłączony.				
<u>D</u>	Sieć przewodowa jest połączona.				
\$	Sieć bezprzewodowa jest połączona.				

Analizator posiada cztery wejścia BNC pozwalające na podłączenie sondy do pomiaru prądu i pięciu wtyków do pomiaru napięcia. W przypadku układu 3-fazowego należy dokonać podłączenia tak, jak pokazano to na rysunku powyżej.

Należy zacząć od założenia sond wokół przewodów fazowych L1/A, L2/B, L3/C oraz N.

Sondy posiadają oznaczenia wskazujące na właściwą polaryzację sygnału.

Następnie należy dokonać połączeń do pomiaru napięcia, rozpoczynając od **uziemienia** i przechodząc do **N**, **A** (L1), **B** (L2), **C** (L3). Aby zapewnić dokładność pomiaru, zawsze należy podłączyć uziemienie.

W przypadku sieci jednofazowych należy skorzystać z wejścia napięciowego A (L1), wejścia prądowego A (L1) oraz wejścia uziemienia. Faza napięcia L1/A jest fazą odniesienia dla wszystkich pomiarów.

1.4 Szybkie omówienie trybów pomiaru

♦ MENU

Poniższe pomiary są dostępne za pomocą przycisku 【MENU】:

♦ MONITOR

Naciśnij przycisk **[MONITOR]**, aby wejść do funkcji monitorowania, mieć możność monitorowania parametrów RMS, harmonicznych, migotania, skoków, spadków, gwałtownych zmian napięcia, przerwań, asymetrii i częstotliwości. Ekran wykresu słupkowego przedstawia poniższy obraz:

1.5 Ekran i przyciski funkcji

Analizator posiada różne typy ekranów pozwalających wyświetlać wyniki pomiaru na różne sposoby.

♦ Ekran tabeli

Volts/Amps/Hert	tz 230V;5	0Hz;CTC1535	4 2017	7-06-15 07:52:30
Freq = 50.00	OHz	0:03:03		
	L1:	L2:	L3:	Ν
Urms(V)	220.00	220.00	220.00	0.02
Upk(V)	311.21	311.17	311.17	0.07
CF	1.41	1.41	1.41	3.77
	L1:	L2:	L3:	N
Irms(A)	0.17	0.26	0.34	0.06
lpk(A)	0.35	0.55	0.67	0.18
CF	2.09	2.12	1.97	3.18
			Trend	Hold
F1	F2	F3	F4	F5

Ekran ten wyświetla natychmiastowy podgląd ważnych wartości liczbowych pomiaru w trybie **Napięcie/Prąd/Częstotliwość**.

Opis ekranu:

- 1 Nagłówek ekranu pokazuje bieżący tryb pomiaru, niektóre informacje będą wyświetlane w postaci listy rozwijanej.
- 2 Tabela pośrodku ekranu wyświetla parametry i wartości pomiaru, które zależą od trybu pomiaru, numeru fazy i konfiguracji

okablowania.

3 Opcja funkcji znajduje się u dołu ekranu, odpowiadając przyciskom **[F1] ~ [F5]**.

Opis przycisków funkcyjnych:

- **[F4]** : Dostęp do ekranu Trendów.
- **[F5]** : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

♦ Ekran trendów

Volts/Amps/H	lertz	230	V;50Hz	2;CTC1535		4 /201	L7-06-1	15 09:01:10
			\odot	0:02:06				
U rms(V)	L1:	220.00	L2:	220.00		220.00	N: C	0.02
230								
210								
200								2
210 230								
<mark>210</mark> 220								
0 10m	8r	n	6m		4m		2m	N
Tab						Back		Hold

Ekran trendów pokazuje wartości mierzonych parametrów zmieniające się w czasie. Czas wyświetlany jest na linii poziomej, wykres trendu budowany jest stopniowo od prawej krawędzi ekranu.

Opis przycisków funkcyjnych:

- **[F1]** :Przełączanie wyświetlanych parametrów
- **[F4]** :Powrót do ekranu tabeli.
- **[F5]** :Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

Rozdział 2 Podstawowe działania

2.1 Podstawka i pasek

Analizator posiada podstawkę pozwalającą obserwować ekran pod kątem, gdy urządzenie znajduje się na płaskiej powierzchni. Pokazany na rysunku pasek stanowi część standardowego wyposażenia analizatora.

2.2 Włączanie i wyłączanie

Po wciśnięciu przycisku Power pojawi się pojedynczy sygnał dźwiękowy i wyświetli się początkowy interfejs. Naciśnij przycisk Power w stanie włączenia, analizator zapyta użytkownika, czy wyłączyć urządzenie, urządzenie wyłączy się po potwierdzeniu.

Obowiązkowe wyłączenie: Analizator zostanie wyłączony, jeśli użytkownik naciśnie klawisz Power około 10 s po włączeniu zasilania.

2.3 Jasność ekranu

Ekran analizatora posiada 4 stopnie jasności przełączane za pomocą przycisku zmiany jasności. Gdy analizator jest zasilany baterią sugeruje się korzystać z niskiej jasności w celu zmniejszenia poboru mocy.

2.4 Aktualizacja oprogramowania wbudowanego

Jeżeli w czasie pracy z analizatorem wykryty zostanie błąd, należy skontaktować się z pomocą techniczną w celu pobrania pakietu aktualizacyjnego.

Pakiet aktualizacyjny należy umieścić w katalogu głównym dysku U przed podłączeniem analizatora. Po rozpoznaniu dysku U przez urządzenie, wejdź do interfejsu konfiguracyjnego użytkownika z głównego menu, naciśnij **[**F1**]**, aby wejść do interfejsu aktualizacji.

User	230V;	50Hz;CTC1535	 .8-02-27 10:37:50	User	230V;50Hz;CTC0130	12018	-02-17 03:36:56
Versio	n:	1.0.0		Software:1.0.0_ Firmware:0.2.36	_201803081026 ô		
Name:		root					
Langua	age:	English			Software		
Sleep:		OFF			Solware		
		Date&Time					
		LAN SETUP					
		WLAN SETUP					
Update	Phase Color		Back	Execute			Exit

Istnieją typy plików aktualizacji dotyczące oprogramowania, oprogramowania układowego i systemu. Wybierz, które pliki chcesz zaktualizować, analizator zgłosi monit po zakończeniu aktualizacji, a następnie odłącz dysk U, wyłącz analizator oraz włącz zasilanie, aby ukończyć aktualizację.

Podczas procesu aktualizacji mogą pojawiać się kody błędów pokazane w tabeli poniżej, wraz ze sposobem ich rozwiązania.

Kod błędu	Rozwiązanie				
"ErrCode: 0000 XXXX"	Możliwe uszkodzenie Flash, wymień Flash.				
"ErrCode: 0001 XXXX"	Model SPI FLASH nie jest obsługiwany, sprawdź plik aktualizacji.				
"ErrCode: 0003"	Błąd Weryfikacji danych oprogramowania układowego, sprawdź plik aktualizacji.				
"ErrCode: 0005 XXXX"	Nieprawidłowy stan, prosimy o informację zwrotną XXXX dla producenta.				
"ErrCode: 0010" Poważne przekroczenie czasu. Nie wyłączaj urządzenia. Ponownie zaktualizuj oprogramowanie układowe.					
"ErrCode: 0011" Spróbuj ponownie zaktualizowa oprogramowanie układowe.					
XXXX oznacza szczegółowy komunikat o błędzie, prosimy o informacje zwrotna dla producenta					

2.5 Podłączenia wejściowe

Należy sprawdzić, czy analizator spełnia wymogi dla testowanego układu. Dotyczy to: konfiguracji okablowania, częstotliwości znamionowej, napięcia znamionowego, współczynnika prądowego zacisków i zakresu.

Analizator posiada cztery wejścia BNC pozwalające na podłączenie sondy do pomiaru prądu i pięciu wtyków do pomiaru napięcia. Jeżeli to możliwe, zawsze należy odłączyć zasilanie od testowanego układu przed podłączeniem analizatora, należy też zawsze korzystać z właściwych środków ochrony osobistej.

W przypadku systemu 3-fazowego należy dokonać podłączenia tak, jak opisano w rozdziale 1.3.

2.6 Ustawienia użytkownika

Interfejs ustawień użytkownika

User		230	V;50Hz;CTC1535	- 💷 🙀 / 2018	-02-27 10:37:50
	Versio	n:	1.0.0		
	Name:		root		
	Langua	age:	English		
	Sleep:		OFF		
			Date&Time		
			LAN SETUP		
			WLAN SETUP		
Upo	late	Phase Colo	r		Back

Nazwę użytkownika, język, czas uśpienia, czas systemowy i ustawienia sieciowe można ustawić w tym interfejsie przyciskami 【▲】【▼】【◀】

【▶】i【ENTER】.

Czas uśpienia: jeżeli po ustawieniu czasu uśpienia żaden przycisk nie zostanie wciśnięty, to po upływie ustawionego czasu jasność urządzenia zostanie automatycznie zmniejszona do najniższego poziomu, co wydłuży czas pracy urządzenia, gdy będzie ono zasilane tylko z baterii. Po wciśnięciu dowolnego przycisku jasność powróci do pierwotnego ustawienia.

|--|

User	3P WYE	12018	02-17 03:46:10
11.			
1.2			
L2.			
L3:			
N:			
GND:			
Default		Cancle	Save

Naciśnij **[F2]**, aby ustawić kolor fazy zgodnie ze standardem lokalnym określania koloru fazy.

Różna faza, inny kolor do reprezentowania wartości pomiaru każdej fazy. Domyślne ustawienia kolorów faz A (L1), B (L2), C (L3), N i GND to odpowiednio żółty, zielony, czerwony, niebieski i zielony.

2.7 Konfigurowanie analizatora

						00 45 00 5	0.40
Setup		3P WYE		- IIII (2018	-02-15 08:5	2:4:
Config: Freq: Vnom:	3P 5 2	WYE OHz 30V	3P WY	E 		-L1 -GND -N -L2 -L3	
Clam	p	Irange		V Ratio		Ratio	
PY-300	DOA	3000A		1:1		1:1	
Config	Fre	q	Vnom	C	amp	Limits	

♦ Konfiguracja interfejsu

Po włączeniu u góry ekranu wyświetli się aktualne ustawienie. Sprawdź, czy data i godzina zegara systemowego są prawidłowe. Wybrana konfiguracja okablowania musi odpowiadać konfiguracji testowanego układu. Przycisk

(SETUP) pozwala na dostęp do menu umożliwiających wyświetlanie i zmianę ustawień analizatora.

Ustawienia są pogrupowane w cztery funkcjonalne sekcje:

[F1] : konfiguracja okablowania. **[F2]** : ustawienia częstotliwości znamionowej.

[F3] : ustawienia napięcia znamionowego. **[F4]** : ustawienia zacisków prądowych.

(F5) : ustawienia limitów monitorowania: wczytywania, zapisu i określanie limitów monitorowania jakości energii.

Limity monitorowania

Analizator ma ustawiony zestaw limitów zgodnie z normą EN50160 i oferuje dwie opcje definiowalne przez użytkownika, które użytkownicy mogą modyfikować zgodnie ze standardowym zestawem limitów EN50160 i zapisać jako zdefiniowany przez użytkownika zestaw limitów.

Limity	Regulacje
Napięcie	2 możliwe wartości procentowe (100% i regulowana): każda z regulowanym limitem górnym i dolnym.
Harmoniczne	Dla harmonicznych 2-25 i THD 2 możliwe wartości procentowe (100% i regulowana): każda z regulowanym górnym limitem.
Migotanie	Krzywa graniczna (typ lampy). 2 możliwe wartości procentowe (100% i regulowana): regulowany procent z regulowanym górnym limitem.
Zapady (*)	Wartość progowa, histereza, dozwolona liczba tygodni.
Przepięcia (*)	Wartość progowa, histereza, dozwolona liczba tygodni.
Zaniki (*)	Wartość progowa, histereza, dozwolona liczba tygodni.
Nagłe zmiany napięcia (*)	Tolerancja napięcia, czas stabilny, minimalny krok, minimalna wartość, dozwolona liczba tygodni.
Asymetria	2 możliwe wartości procentowe (100% i regulowana): regulowany procent z regulowanym górnym limitem.
Częstotliwość	2 możliwe wartości procentowe (100% i regulowana): każda z regulowanym limitem górnym i dolnym.

(*): Konfiguracje obowiązują też dla trybu pomiaru.

2.8 Korzystanie z pamięci i komputera

Analizator może zapisywać zrzuty ekranów i danych do pamięci, zaś użytkownicy mogą przeglądać, usuwać i kopiować te dane. Analizator można też podłączyć do komputera, za pomocą którego możliwe jest zdalne sterowanie analizatorem.

♦ Interfejs SAVE

Naciśnij przycisk **[SAVE]**, aby zapisać bieżący zrzut ekranu lub dane pomiarowe.

Volts/Amps/Hertz	3P WYE		1 2018	02-17 05:50:24
Save Screen:				
Save Data:				
Save As:				
File name:	Screen 18			1
			Consol	Course
		_	Cancel	Save

Użyj przycisków 【▲】【▼】, aby wybrać typ zapisanych plików.

Użyj przycisku **(ENTER)**, aby wejść do interfejsu edycji i edytować nazwę pliku.

Naciśnij przycisk **[F5]**, aby zakończyć zapisywanie i wrócić do pierwotnego interfejsu.

♦ Interfejs MEMORY

М	lemory	3P WYE	E	12018-0	
	TIME		DESCRI	PTION	TYPE
	2018-02-14 01:	:08:15	Scree	n 1	÷
	2018-02-15 08	:52:45	Scree	n 2	alar.
	2018-02-16 00	:42:27	Scree	n 3	23.50
	2018-02-16 01	:01:50	Scree	n 4	23.50
	2018-02-16 01	:03:00	Screen 5		200
	2018-02-16 01	:18:32	Scree	n 6	200
	2018-02-17 06	:16:54	Data S	et 1	
		To USB	View	Delete	Back

Przycisk MEMORY umożliwia dostęp do interfejsu listy zapisów, który pokazuje czas zapisu, nazwę i typ zapisanych plików. Użyj przycisków 【▲】【▼】, aby wybrać określone pliki. Po uzyskaniu dostępu do interfejsu zapisu, włóż dysk U i poczekaj kilka sekund, a następnie na pasku stanu wyświetli się ikona dysku, następnie zaświecą się znaki "TO USB", naciśnij 【F2】, aby skopiować aktualnie wybrane pliki do dysku U, następnie wyświetli się pasek postępu, który monituje proces kopiowania,. Po zakończeniu kopiowania odłącz dysk U, a następnie podłącz go do komputera, aby wyświetlić zawartość.

Opis przycisków funkcyjnych:

- **(F2)**: Kopiuj plik na dysk U po włożeniu dysku U i podświetleniu znaku przycisku.
- **[F3]**: Wyświetl zaznaczony plik zapisu.
- **[F4]**: Usuń zaznaczony plik zapisu.
- **[F5]** : Powrót do poprzedniego menu.
- Korzystanie z oprogramowania komputerowego Wymagania instalacyjne PQA View_Setup Procesor: procesor powyżej 1 GHz.
 - Pamięć: ponad 2G.

Wyświetlacz: Monitor o rozdzielczości VGA lub wyższej (zalecana rozdzielczość 1024 × 768 lub wyższa).

Dysk twardy: ponad 100M.

Karta sieciowa: Karta sieciowa 10M / 100M.

System operacyjny: Windows Vista lub nowsza wersja.

Wersja Microsoft Office: Office 2007 lub nowszy.

Ustawienia sieci

Interfejs LAN jest skonfigurowany do realizacji komunikacji między urządzeniem a komputerem.

Analizator jest wyposażony w interfejs LAN do komunikacji z komputerem PC. Za pomocą dostarczonego oprogramowania komputerowego użytkownik może zdalnie sterować analizatorem, pobierać zapisane pliki, analizować dane i tworzyć raporty na komputerze. Dodatkowo użytkownik może również użyć oprogramowania komputerowego do przeglądania danych i zrzutu ekranu skopiowanego z dysku U.

Wybierz 【LAN SETUP】 w opcji 【User】, jak pokazano na poniższym rysunku:

User	3P WYE	ų	🖵 📬 / 2018	8-02-17 07:17:36
LAN SETUP				
IP In-use:	192.168.	99.153		
IP Setup				
ି Use DHCI	þ			
Static				
IP Ad	dress:	192.16	8.99.153	
Net M	/lask:	255.25	5.255.0	
Gate	way:	192.1	68.99.1	
			Cancel	Ok

Połącz analizator z komputerem PC za pomocą jednego kabla sieciowego, ustaw adresy IP analizatora i komputera na inne, ale znajdujące się w tym

samym segmencie sieci. Na przykład: Jeśli adres IP na PC to 192.168.1.XXX, to adres IP w analizatorze również powinien być 192.168.1.XXX.

Po poprawnym ustawieniu adresu IP analizatora, analizator zostaje podłączony do sieci za pomocą jednego nowego kabla. Otwórz oprogramowanie PQA View, wybierz 【auto connection】 lub 【manual connection】 (wprowadź adres IP ręcznie) w opcji 【file】, po pomyślnym połączeniu wyświetli się interfejs operacyjny symulujący analizator i użytkownik może pobrać zapisany plik do urządzenia jak przedstawione poniżej.

· • • • • • • • • • • • • • • • • • • •	PQA Vie	•	- C A
File Chart Operate Advanced Analysis System Setup Help			
Open File Close File Print Close File Open Councer to			
Reaste Co Voti, An	nt fø) 94. Hertz 2309, 504c.CTC 15.35 💶 👰 / 2018 07 27 10.47.5	Develoal Te Browne	
Fre	Ng = 50.00Hz	Note: Please don't to save the file under the operating system drive!	
Ums	L4 L2 LB N (V) 0.03 0.02 0.02 0.02	Logger-1.csv Logger-2.csv Logger-3.cav	
UpkV		Logar-Low Logar-Store	
cr	3.18 3.83 3.19 3.53	Logger-2_Low Logger-3_Low Logger-3_Low	
	U U U N	Monitor Screen 1.png	
irms(/	0.07 0.07 0.06 0.09		
(c+(A)			
cr			
	Trend Hold		
	1 F2 F3 F4 F5		
	SCOPE UP SETUP		
	MENU LEFT ENTER RIGHT MEMORY		
	MONITOR DOWN SAVE	Refresh List Download	

Ustawienia WLAN

Wybierz 【WLAN SETUP】 w opcji 【User】, jak pokazano na poniższym rysunku:

[F1] : Otwieranie / zamykanie sieci bezprzewodowej.

[F2] : Dostęp do wybranej sieci bezprzewodowej

[F5] : Wyjście z ustawień sieci bezprzewodowej

Otwórz sieć bezprzewodową i wybierz router bezprzewodowy, który ma być podłączony, użytkownik jest informowany o nawiązaniu połączenia, jeśli przypisany adres IP zostanie wyświetlony po prawej stronie wyświetlacza. Podłącz laptopa lub komputer z funkcją komunikacji bezprzewodowej do tego samego routera bezprzewodowego, a następnie uruchom oprogramowanie PQA View na komputerze, wybierz 【auto connection】 lub 【manual connection】 (ręcznie wprowadź adres IP) w opcji 【file】, aby zrealizować zdalne sterowanie analizatora i pobrać dane pomiarowe.

Po zainstalowaniu PQA View_Setup wybierz **[User Manual]** w opcji **[**help **]**, aby sprawdzić, jak używać oprogramowania PQA View.

Rozdział 3 Przykładowe zastosowania

3.1 Zakres

W trybie zakresu napięcia i prądu w testowanym układzie zasilania wyświetlane są w postaci wykresów kształtu przebiegu. Wyświetlane są również wartości liczbowe danych takich jak napięcie fazy, prąd fazy, częstotliwość itp. Ekran wykresu kształtu przebiegu udostępnia oscyloskopowy obraz napięcia i prądu o krótkim czasie odświeżania. Nagłówek ekranu pokazuje stosowne wartości RMS napięcia/prądu. Kanał **A (L1)** to kanał odniesienia.

Opis przycisków funkcyjnych:

[F1]: Wybór zestawu wykresów kształtu przebiegu do wyświetlenia: U wyświetla wszystkie napięcia, a I wyświetla wszystkie prądy. L1, L2, L3 i N (neutralny) jednocześnie wyświetlają napięcie i prąd wybranej fazy.

[F2**]** : Naciśnij ten przycisk, aby automatycznie dostosować wyświetlanie przebiegu zgodnie z ekranem w celu uzyskania lepszego efekt obserwacji.

【F3】: Włącza lub wyłącza kursor. Po włączeniu kursora, wartość przebiegu w pozycji kursora jest wyświetlana w nagłówku ekranu. Przesuń kursor, naciskając przycisk 【◀】 lub 【►】.

【F4】: Włącza / wyłącza funkcję Zoom. Po włączeniu funkcji Zoom, przebieg można powiększyć, naciskając jednak przyciski kierunkowe.

[F5**]** : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

Po rozpoczęciu pomiaru naciśnij przycisk 【SAVE】, aby zapisać bieżący zrzut ekranu lub zmierzone dane.

3.2 Napięcie/Prąd/Częstotliwość

Funkcja wykorzystywana jest do pomiaru stabilnego napięcia, prądu, częstotliwości i współczynników szczytu. Współczynnik szczytu (CF) wskazuje na skalę zaburzenia: CF równy 1.41 oznacza brak zaburzeń, a CF wyższy niż 1,8 oznacza wysoki poziom zaburzeń. Ekran ten pozwala

pobieżnie ocenić działanie układu przed szczegółowym jego zbadaniem za pomocą innych trybów pomiaru.

♦ Ekran tabeli

Volts/Amps/Hert	z 3P WYE		(11) 201	8-02-16 01:01:48
Freq = 50.00	OHz	<u></u> 0:00:23		
	L1	L2	L3	N
Urms(V)	230.01	230.00	229.99	0.02
Upk(V)	325.34	325.32	325.30	0.07
CF	1.41	1.41	1.41	3.91
	L1	L2	L3	N
Irms(A)	0.01	0.01	0.02	0.00
lpk(A)	0.02	0.03	0.03	0.01
CF	2.08	1.86	1.82	3.43
			Trend	Hold

Liczba kolumn tabeli zależna jest od konfiguracji układu zasilania. Liczby w tabeli są wartościami bieżącymi, mogącymi zmienić się w każdej chwili. Zmiany tych wartości są zapisywane od chwili uruchomienia pomiaru. Zapis jest widoczny na ekranie trendów.

Naciśnij przycisk 【 SAVE 】, aby zapisać bieżący zrzut ekranu lub zmierzone dane.

Opis przycisków funkcyjnych:

- **[F4]** : Dostęp do ekranu Trendów
- **[F5]** : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.
 - ♦ Trend

Trend rejestruje dane zmierzone w ciągu ostatnich dziesięciu minut, a następnie buduje wykres poczynając od prawej strony ekranu. Odczyty w

nagłówku odpowiadają najnowszej wartości naniesionej na wykres (pierwsza wartość od prawej).

Opis przycisków funkcyjnych:

[F1] : Zmiana między parametrami wyświetlanymi na ekranie trendów, ich treść wyświetlana jest w nagłówku.

[F4] : Powrót do ekranu tabeli

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

3.3 Zapady i przepięcia

Funkcja Zapady i przepięcia rejestruje przepięcia i zapady, zaniki i gwałtowne zmiany napięcia.

Zapady i przepięcia to szybko występujące odchylenia od napięcia normalnego. Skala skoku może sięgać od 10 do 100 V. Czas trwania może różnić się od połowy cyklu do kilku sekund, zgodnie z definicją zawartą w normie IEC61000-4-30.

W czasie zapadu napięcia spada, w czasie skoku napięcie rośnie. W układach 3-fazowych, zapad rozpoczyna się w chwili, gdy napięcie na jednej lub kilku fazach spada poniżej wartości progowej zapadu i kończy się, kiedy napięcie wszystkich faz osiąga wartość równą co najmniej sumie wartości progowej zapadu i wartości histerezy. Skok rozpoczyna się w chwili, gdy napięcie na jednej lub kilku fazach wzrasta powyżej wartości progowej skoku i kończy się, kiedy napięcie wszystkich faz osiąga wartość równą, co najmniej różnicy wartości progowej skoku i wartości histerezy. Warunkami brzegowymi dla zapadów i przepięć są wartości progowe i histereza. Zapady i przepięcia cechują się czasem trwania, skalą i czasem występowania. Zostało to wyjaśnione na rysunkach 3-3-1 i 3-3-2.

Rys. 3-3-1 Charakterystyka zapadu napięcia

Rys. 3-3-2 Charakterystyka przepięcia

W czasie zaniku napięcia spada poniżej swojej wartości znamionowej. W układach 3-fazowych, zanik rozpoczyna się w chwili, gdy napięcie na wszystkich fazach spada poniżej wartości progowej i kończy się, kiedy napięcie wszystkich faz osiąga wartość równą co najmniej sumie wartości progowej zaniku i wartości histerezy. Warunkami brzegowymi dla zaników są wartości progowe i histereza. Zaniki cechują się czasem trwania, skalą i czasem występowania. Zostało to wyjaśnione na rysunku 3-3-3.

Rys. 3-3-3 Charakterystyka zaniku napięcia

Gwałtowne zmiany napięcia to szybkie przejścia napięcia RMS pomiędzy dwoma stanami stabilnymi. Gwałtowne zmiany napięcia są zapisywane w oparciu o tolerancję stabilnego napięcia, czasu stabilności, minimalną kompensację i minimalną wartość wykrywaną. Kiedy zmiana napięcia przekracza wartość progową spadku lub skoku, jest traktowana jako spadek lub skok, nie jako gwałtowna zmiana napięcia. Lista zdarzeń wyświetla zmianę kroku napięcia i czas przejściowy. Szczegółowa lista wyświetla maksymalną zmianę napięcia względem napięcia znamionowego. Trend zmian napięcia jest pokazany na rys. 3-3-4.

Rys. 3-3-4 Charakterystyka gwałtownej zmiany napięcia

Poza napięciem zapisywany jest również prąd. Pozwala to na zaobserwowanie przyczyn i skutków odchyleń. Przycisk funkcyjny **[**F2**]** pozwala na dostęp do tabel zdarzeń przedstawiających zdarzenia związane z napięciem w kolejności chronologicznej.

♦ Trend

Dips&Swells		3P WY	Έ			201	8-02-16	6 01:18:30
EVENTS: 2	12		Ċ	0:00:28				
U(V)	L1:	229.78	L2:	229.71		229.74		0.02
240 0 240								2
0 240								
0 230								
o 1m	50s	40s		30s	2	20s	10s	•N
Tab		Events	0	n Off	10	Zoom n Off		Hold

Rejestrowane są zarówno napięcie jak i prąd, aby pomóc użytkownikowi zaobserwować przyczynę odchyleń. Opis przycisków funkcyjnych:

[F1] : Zmiana między trendami napięcia i prądu, nagłówek pokazuje wyświetlane parametry.

[F2] : Dostęp do Tabel zdarzeń

【F3】: Włącza /wyłącza kursor, usuwanie kursora za pomocą przycisków 【◀】【►】 po jego włączeniu.

[F4]: Włącza /wyłącza funkcję Zoom.

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

Kryteria zdarzeń, takich jak wartość progowa, histereza i inne, posiadają wartości domyślne, ale mogą być one regulowane przez użytkownika. Do menu regulacji można przejść za pomocą przycisku 【SETUP】, można tam ustawić limity.

♦ Tabele zdarzeń

EVENTS: 1/10 TIME T 2018/02/16 01:18:10 L1 2018/02/16 01:18:10 L2 2018/02/16 01:18:10 L3 2018/02/16 01:18:10 L3 2018/02/16 01:18:10 L4 2018/02/16 01:18:10 L4 2018/02/16 01:18:10 L4		2018-02-16 01:18:35
TIME T 2018/02/16 01:18:10 L1 2018/02/16 01:18:10 L2 2018/02/16 01:18:10 L3 2018/02/16 01:18:10 L1	5 0:00:35	
2018/02/16 01:18:10 L1 2018/02/16 01:18:10 L2 2018/02/16 01:18:10 L3 2018/02/16 01:18:10 L1 2018/02/16 01:18:10 L1 2018/02/16 01:18:10 L3	YPE LEVEL	DURATION
2018/02/16 01:18:11 L2 2018/02/16 01:18:11 L3 2018/02/16 01:18:15 L3 2018/02/16 01:18:15 L2	DIP 0.0 2 DIP 0.0 3 DIP 0.0 1NT 0.0 2 INT 0.0 3 INT 0.0 RVC 230.0 RVC 229.9 RVC 229.8 RVC 230.0	00:00:03:601 00:00:03:601 00:00:03:600 00:00:03:200 00:00:03:199 00:00:03:199
		Pook

Lista zdarzeń zapisuje wszystkie przekroczenia wartości progowych napięć poszczególnych faz. Wartości progowe są zgodne z międzynarodowymi normami bądź ustawieniami użytkownika –możliwe jest użycie definiowalnych wartości progowych. Tabela zdarzeń zapisuje istotne dane zdarzenia: czas rozpoczęcia, czas trwania, skala napięcia, typ zdarzenia, fazę itp.

W tabelach zdarzeń wykorzystywane są następujące skróty:

- **DIP** spadek napięcia
- SWL skok napięcia
- **INT** zanik napięcia
- **RVC** szybka zmiana napięcia

3.4 Harmoniczne

Składowe harmoniczne pozwalają mierzyć składowe harmoniczne i interharmoniczne do 100-tej włącznie. Mierzone są też dane powiązania, takie jak składowe DC, łączne zniekształcenie harmoniczne (THD). Składowe harmoniczne to okresowe zniekształcenia przebiegu napięcia, prądu bądź mocy. Wykres kształtu przebiegu może być traktowany jako połączenie wielu wykresów kształtu przebiegu o różnych częstotliwościach i amplitudach. Analizator mierzy też wpływ każdego z tych elementów na sygnał podstawowy. Wyniki wyświetlane są na ekranie wykresów słupkowych. Składowe harmoniczne często są wywoływane przez nieliniowe obciążenia, takie jak źródła prądu stałego w komputerach, telewizorach i silnikach elektrycznych o regulowanej szybkości. Składowe harmoniczne mogą prowadzić do przegrzania transformatorów, przewodów i silników.

Uwaga: Przy częstotliwości znamionowej 400 Hz harmoniczne mogą być mierzone tylko do 12 razy, a harmoniczna międzywęzłowa jest niedostępna.

♦ Ekran wykresów słupkowych

Ekran wykresów słupkowych wyświetla procentowy wpływ każdego składnika sygnału pełnego lub podstawowego. Sygnał bez zniekształceń powinien pokazywać 1-szą harmoniczną o wartości 100% podczas gdy inne składowe będą posiadać wartość 0: w praktyce sytuacja taka nie występuje, gdyż zawsze pojawiać się będą składowe harmoniczne zniekształcające sygnał.

Sinusoida ulega zniekształceniu po dodaniu do niej składowych harmonicznych. Poziom zniekształcenia oddaje procentowa wartość THD (całkowitego zniekształcenia harmonicznego). Wyświetlacz może też pokazywać odsetek składników DC i zależność dla każdego stosunku harmonicznego.

Przyciski 【 ◀ 】 【 ► 】 służą do umieszczenia kursora na danym słupku. Nagłówek ekranu pokazuje harmoniczne napięcie / prąd, stosunek składnika harmonicznego, częstotliwość i kąt fazy. Jeżeli wszystkie słupki nie mogą być wyświetlone na ekranie jednocześnie, można wyświetlić kolejny ich zestaw przesuwając kursor w lewo lub prawo ekranu.

Opis przycisków funkcyjnych:

[F1]: Wybór rodzaju składowej harmonicznej: napięcie, prąd.

[F2]: Wybór wyświetlanych wykresów słupkowych: L1, L2, L3, N bądź wszystkie

[F3] : Wyświetlanie wartości interharmonicznych wł/wył

[F4]: Otwórz ekran tabeli

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

♦ Ekran tabeli

Harmonics	230V;50	230V;50Hz;CTC0080 (III) 2018-02-16 02:13:39				
		0:01:47				
	L1:	L2:	L3:	N:		
Uthd	18.03	45.16	46.03	100.00		
Udc	0.27	0.26	0.88	0.00		
lthd	68.31	100.00	100.00	100.00		
ldc	0.00	52.35	22.98	100.00		
Uharm 1	100.00	100.00	100.00	100.00		
Uharm 2	0.00	2.24	6.75	60.18		
Uharm 3	15.00	34.60	34.60	39.86		
		%r <mark>%f</mark>	Harmonic	Hold		

Ekran tabeli przedstawia wszystkie parametry składowych harmonicznych, takie jak napięcie harmoniczne, prąd harmoniczny, napięcie interharmoniczne i prąd interharmoniczny. Przyciski góra/dół pozwalają przejść do kolejnej strony.

Opis przycisków funkcyjnych:

[F3] : wybierz %f lub %r aby wyświetlić harmoniczne.

[F4] : Powrót do wykresu słupkowego harmonicznych

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ. Instrukcje:

%f: procent składowej harmonicznej i sygnału podstawowego.

%r: procent składowej harmonicznej i wartości RMS sygnału.

3.5 Moc i energia

Funkcja Moc i energia wyświetla tabelę ze wszystkimi ważnymi parametrami mocy. Stosowny ekran trendów wyświetla wartości mierzonych parametrów względem czasu w tabeli. Pomiar mocy jest zgodny z IEEE1459.

♦ Ekran tabeli

Power&Energy	230V;5	0Hz;CTC0130	1 🔁 🛃 201	8-02-17 08:28:01		
	0:00:18					
	L1	L2	L3	Total		
P(kW)	0.00	0.00	0.00	0.00		
S(kVA)	0.00	0.00	0.00	0.00		
Q(kvar)	} 0.00	} 0.00	≹0.00	+ -0.00		
PF	0.00	0.00	0.00	0.00		
cosΦ	1.00	-0.56	-0.94			
tanΦ	9999.00	9999.00	9999.00	9999.00		
Urms(V)	0.05	0.06	0.06			
Irms(A)	0.54	0.07	0.08			
		Energy	Trend	Hold		

Opis parametrów:

P (kW): moc czynna.

S (kVA): moc pozorna, wynik mnożenia prądu i napięcia rms.

Q1 (kvar): moc bierna przebiegu podstawowego.

PF: współczynnik mocy, moc czynną podzielona przez moc pozorną. cosΦ: współczynnik przesunięcia, cosinus wartości kąta między

napięciem podstawowym i prądem.

tanΦ: stosunek mocy biernej podzielonej przez moc czynną. Urms: wartość średnia kwadratowa napięcia.

Irms: wartość średnia kwadratowa prądu.

🕴: obciążenie indukcyjne 👎: obciążenie pojemnościowe

Q1: metoda obliczeniowa wygląda następująco:

Wektorowa moc bierna wartości podstawowej:

 $\mathbf{Q}_{1\mathrm{X}} = \mathbf{U}_{1\mathrm{X}} \cdot \mathbf{I}_{1\mathrm{X}} \cdot \sin(\boldsymbol{\varphi} \mathbf{u}_{1\mathrm{X}} - \boldsymbol{\varphi} \mathbf{i}_{1\mathrm{X}})$

```
Układowa moc bierna wartości podstawowej: Q_1^+ = 3 \cdot U_1^+ \cdot I_1^+ \sin(\varphi u_1^+ - \varphi i_1^+)
```

Superscript + oznacza dodatni składnik sekwencji

Opis przycisków funkcyjnych:

[F3] : Wyświetla tabelę pod ekranem mocy i energii, która pokazuje

zużycie energii w poszczególnych fazach i w sumie.

[F4] : Przejście do ekranu trendów.

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

♦ Ekran mocy i energii

Power&Energy	230V;	50Hz;CTC0130	1 🔁	8-02-17 08:38:01
		0:10:18		
	L1	L2	L3	Total
P(kW)	0.00	0.00	0.00	0.00
S(kVA)	0.00	0.00	0.00	0.00
Q(kvar)	} 0.00	± 0.00	}0.00	‡ -0.00
PF	0.00	0.00	0.00	0.00
cosΦ	1.00	-0.95	-0.90	
kWh	0.00	0.00	0.00	0.00
kVAh	0.00	0.00	0.00	0.00
kvarh	0.00	0.00	0.00	0.00
	Reset	Close Energy	Trend	Hold

Opis parametrów:

kWh: energia czynna

kVAh: energia pozorna

Kvar: energia bierna

Opis przycisków funkcyjnych:

- **[F2]** : liczba pokazana na wyświetlaczu zostanie zresetowana do 0
- **[F3]** : Zamyka ekran tabeli.
- **[F4]** : Przejście do ekranu trendów.
- [F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

3.6 Migotanie

Fluktuacje opisują migotanie oświetlenia wynikające ze zmian napięcia zasilającego. Budowa analizatora jest w pełni zgodna z normą miernika migotania **IEC61000-4-15**. Analizator przelicza skalę i czas zmian napięcia na "współczynnik zaburzenia" wywołany migotaniem lampy o mocy 60 W. Wysoki poziom migotania oznacza, że będzie ono drażniące dla większości ludzi. Zmiany napięcia mogą być relatywnie małe. Pomiar jest zoptymalizowany dla lamp zasilanych z sieci **120V/60Hz** lub **230V/50Hz**. Ekran trendów wyświetla zmiany bieżącego wykrywania fluktuacji względem czasu.

Uwaga: Funkcja migotania nie jest stosowana do pomiaru układu zasilania 400 Hz.

∻	Tabela

Flicker	230V;50Hz;CT	0130	2018-0	2-16 03:20:16
	0:1	10:18		
	L1			
Pinst	1.82	1.82	1.82	
Pst	0.96	0.96	0.96	
Plt	0.00	0.00	0.00	
			Trend	Hold

Opis przycisków funkcyjnych:

[F4] : Przejście do ekranu trendów PF5.

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ. Opis parametrów:

Pinst: Natychmiastowe migotanie

Pst: Migotanie krótkoterminowe (mierzone w ciągu dziesięciu minut).

Plt: Migotanie długoterminowe (mierzone w ciągu dwóch godzin).

3.7 Asymetria

Wahania wyświetlają relacje pomiędzy fazami napięcia i prądu. Wyniki pomiarów są oparte o podstawowy składnik częstotliwości (50 lub 60 Hz, wykorzystywane są składniki symetryczne). W 3-fazowym układzie zasilania, przesunięcie w fazie pomiędzy napięciami i pomiędzy prądami powinno być zbliżone do 120°. Tryb asymetrii udostępnia tabelę pomiaru i wykres wektorowy.

♦ Tabela

Unbalance	230V;50F	lz;CTC0130	(11) 2018-	02-16 03:54:47
Freq = 50.00 Hz		0:00:42		
	Uneg	Uzero	Ineg	Izero
Unbal.(%)	0.0	0.0	0.0	0.0
	L1			N
Ufund(V)	230.02	229.99	229.99	0.00
lfund(A)	100.01	99.98	99.99	0.00
ΦU(°)	0.0	-120.0	-240.0	-145.2
Φl(°)	-360.0	-120.0	-240.0	-131.1
ΦI-U(°)	0.0	0.0	0.0	14.1
			Vector	Hold

Opis przycisków funkcyjnych:

[F4] : Przejście do ekranu wykresu wektorowego.

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

Opis parametrów:

Uneg: Ujemny składnik asymetrii napięcia

Ineg: Ujemny składnik asymetrii prądu

Uzero: Brak asymetrii napięcia

Izero: Brak asymetrii prądu

Ufund: Podstawowe napięcie

Ifund: Podstawowy prąd

ΦU(°): Kąt napięcia podstawowego **ΦI(°)**: Kąt prądu podstawowego

ΦI-U(°) : Kąt między podstawowym napięciem i prądem

Kąt napięcia i prądu każdej fazy jest zależny od kąta napięcia odniesienia A (L1).

♦ Wektor

Unbalance	230V;50Hz;C1	rc0130	(11) 2	018-02	-16 03:54:58
	0 -0:	00:53			
Freq = 50.00Hz					
V1fund:	230.01	Neg.	0.0%	Zero	0.0%
V2fund:	229.99		249		and the second se
V3fund:	229.99				
Φ1(°):	0.0			X	▶ 0
Φ2(°):	-120.0		\mathcal{A}		Y
ФЗ(°):	-240.0		120		
V A L1 L2 L3			Back		Hold

Przedstawia relację fazową pomiędzy napięciami i prądami na wykresie wektorowym podzielonym na części obejmujące 30 stopni. Wektor napięcia odniesienia **A** (L1) jest skierowany w poziomie. Dodatkowe wartości liczbowe obejmują: procent ujemnych wahań napięcia i prądu, procent braku wahań napięcia i prądu, podstawowe napięcie fazowe i prąd fazowy, częstotliwość, kąty fazowe.

Opis przycisków funkcyjnych:

[F1]: Przełącza mierzone parametry: V wyświetla wszystkie napięcia; A wyświetla wszystkie prądy. **L1**, **L2**, **L3** wyświetla jednocześnie napięcie i prąd fazy.

(F4): Powrót do ekranu wahań.

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

3.8 Stany nieustalone

Analizator może zapisać wykresy kształtu przebiegu wysokiej rozdzielczości przy wielu rodzajach zakłóceń. Analizator może wyświetlić chwilowe wykresy kształtu przebiegu napięcia i prądu w ściśle określonym momencie zakłócenia. Pozwala to na sprawdzenie wykresów kształtu przebiegu w chwili wystąpienia stanu przejściowego.

Stany nieustalone to krótkotrwałe piki na wykresie kształtu przebiegu napięcia. Stany takie wiążą się z poziomem energii wysokim na tyle, że może być on przyczyną zakłócenia działania delikatnych układów elektronicznych bądź nawet ich uszkodzenia. Wykres kształtu przebiegu jest zapisywany za każdym razem, kiedy napięcie przekracza dopuszczalne limity. Możliwe jest zapisanie do 100 zdarzeń. Częstotliwość samplowania wynosi 163,84kS/s.

Opis przycisków funkcyjnych:

[F1]: Odtwarzanie zapisanych wykresów kształtu przebiegu stanów przejściowych.

[F2] : Wykres przebiegu automatycznie dostosuje się do rozmiaru ekranu

[F3] : Włącza/ wyłącza kursor

[F4] : Włącza/ wyłącza funkcję Zoom

[F5] : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

Poniższy rysunek pokazuje zapisane zdarzenia przejściowe:

3.9 Prąd rozruchowy

Prądy rozruchu są zapisywane przez analizator. Prądy rozruchu to wzrosty natężenia prądu pojawiające się w chwili, gdy do układu podłączane są duże obciążenia (bądź obciążenia o niskiej impedancji). Prądy takie na ogół stabilizują się po chwili, kiedy obciążenie osiąga normalne warunki pracy.

Przykładowo, prąd rozruchu silnika indukcyjnego może być dziesięć razy wyższy niż jego znamionowy prąd roboczy. Prąd rozruchu to "jednorazowy" tryb pomiaru zapisujący trendy napięcia i prądu po wystąpieniu zdarzenia związanego z prądem. Rozruch pojawia się w chwili, gdy wykres prądu wykracza poza ustalone limity. Wykres trendów budowany jest od prawej krawędzi ekranu. Informacje przedwzbudzeniowe pozwalają sprawdzić, jakie zjawiska zaszły przed pojawieniem się prądu rozruchu.

- 230V;50Hz;CTC0130 🎹 🖵 🖊 2018-02-16 06:16:57 () 0:00:27 EVENTS: 1 I(A) 100.09A L2: 0.12A 0.06A 0.08A 210 0. 1m Curso Zoom Switch Events Hold Off
- ♦ Wyświetlanie trendów

Za pomocą przycisków kierunkowych w menu prądu rozruchu możliwe jest ustalenie limitu wzbudzenia: oczekiwanego czasu prądu rozruchu, prądu znamionowego, progu i wartości histerezy. Maksymalny prąd określa pionową wysokość (pułap) aktualnie wyświetlanego okna. Próg określa wartość prądu, po przekroczeniu której rozpocznie się zapis trendu. Czas rozruchu to czas pomiędzy wzbudzeniem a momentem, w którym prąd spadnie do wartości histerezy; okres ten jest oznaczony na wykresie trendów za pomocą dwóch znaczników pionowych. Nagłówek ekranu wyświetla rms wszystkich faz w czasie trwania rozruchu. Jeżeli opcja Kursor jest włączona, wyświetlana jest wartość rms w miejscu, w którym znajduje się kursor.

Opis przycisków funkcyjnych:

- **[F1]** : Przełączanie wyświetlanych parametrów
- **[F2]** : Dostęp do listy zdarzeń zw. z prądem rozruchu.
- [F3] : Włącza/ wyłącza kursor
- [F4] : Włącza/ wyłącza funkcję Zoom
- **[F5]** : Zmiana pomiędzy opcjami URUCHOM i ZATRZYMAJ.

♦ Lista zdarzeń

3.10 Zapis przebiegu

Za pomocą tej funkcji można rejestrować przebieg napięcia i prądu, częstotliwość próbkowania wynosi do 20k, a czas trwania można ustawić. Parametry na poniższym ekranie można ustawić.

Wave	3P WYE	2018-0	7-27 15:12:30
Memory Available:	19.61G		
Sampling rate:	🗧 5 k		
Duration:	1m		
Save as:	Wave-1		
Immediate			
 Timed 			
Year	2018		
Month	7		
Day	27		
Hours	15		
Minutes	15		
Tab			Start

Plik w formacie WAV może zostać wygenerowany po zakończeniu nagrywania, a użytkownik może przejrzeć go za pomocą oprogramowania komputerowego.

3.11 Rejestrator

Funkcje dziennika służą do zapisywania pakietu danych pomiarowych dla wybranego parametru w regulowanych interwałach of 1 sek. do 1 godz. Po upływie każdego interwału, następuje zapis wartości maksymalnej, minimalnej i średniej każdego wybranego parametru i rozpoczęcie odliczania do kolejnego zapisu. Cały proces trwa do upływu ustalonego czasu zapisu; możliwe jest też swobodne ustalanie zapisywanych parametrów.

Naciśnij przycisk 【MENU】, użyj przycisków kierunku aby wybrać funkcję rejestratora, naciśnij 【 ENTER 】, aby wejść w menu konfiguracji rejestratora.

Logger	230V;5	0Hz;CTC0130	🤹 / 2018-	02-18 06:38:35
Memory Av	vailable:	832M		
Interval:		< 1s 🕨		
Duration:		2 h		
Save as:		Logger-2		
Immedia	ate			
 Timed 				
	Year	2018		
	Month	2		
	Day	18		
	Hours	6		
	Minutes	43		
Tab	Param			Start

Użytkownik może sprawdzić dostępną pamięć, wybrać prametry rejestratora, a także ustawić interwał zapisu, czas logowania i nazwę zapisywanego pliku. Następnie naciśnij **[F5]**, aby rozpocząć.

Plik dziennika zapisywany jest na karcie SD w formacie CSV, który można otworzyć w np. programie EXCEL z pakietu Office 2007 lub nowszego. Każdy plik rejestratora może rejestrować najwyżej 7200 danych, każde 7200 danych będzie generowane jako jeden plik, na przykład ustawienie interwału rejestratora na 1s, czas trwania rejestracji na 4 godziny, wygeneruje 2 pliki rejestratora jako Logger 1.csv i Logger -1_1 .csv.

Naciśnij **[F2]**, aby wejść do interfejsu ustawień parametrów, użyj klawisza kierunkowego i **[ENTER]**, aby wybrać parametry nagrywania, a następnie naciśnij **[F5]**, aby potwierdzić.

♦ Ekran tabeli

Lo	ogger		3P WYE			\$	2018	-02-18 0	6:55:35
	Freq =	49.98 Hz		Ċ	0:00:05				
			L1		L2				_
	Urms(V)		0.04		0.03	0.03		0.04	
			L1						
	Ucf		6.8		5.0	4.6		7.0	
			L1						
	Uthd		48.6		40.1	39.1		52.5	
			L1						
	Udc(V)		0.00		0.00	0.00		-0.01	
						Save		Sto	op

Ekran tabeli wyświetla wszystkie dane pomiarowe wybranych parametrów w czasie rzeczywistym. Za pomocą przycisków lewo/prawo można przejść do kolejnej strony wyświetlania danych.

Opis przycisków funkcyjnych:

[F4] : Zapis danych

[F5] : Zatrzymanie rejestratora

3.12 Monitorowanie

Uwaga: Funkcja monitorowania nie jest stosowana do pomiaru układu zasilania 400 Hz.

Monitorowanie jakości energii wyświetla ekran wykresów słupkowych. Ekran ten pokazuje, czy ważne parametry jakości energii spełniają wymagania. Do parametrów tych należą:

- 1 Napięcia RMS
- 2 Składowe harmoniczne

3 Migotanie

4 Zapady i przepięcia (SWL, DIP), Zaniki (INT), Gwałtowne zmiany napięcia(RVC)

5 Asymetria, i Częstotliwość

Monitorowanie jakości energii zwykle wiąże się z długim okresem obserwacji. Minimalny

czas pomiaru wynosi 2 godziny. Maksymalny czas pomiaru to 1 tydzień.

Większość wykresów słupkowych posiada szeroką podstawę wskazującą regulowany limit czasowy (np. 95% czasu w ramach limitu) i wąski szczyt wskazujący na stały limit równy 100%. Jeżeli jeden lub oba limity zostaną przekroczone, stosowny pasek zmieni barwę z zielonej na czerwoną. Kropkowane linie poziome na wykresie wskazują na położenie limitu 100% oraz limitu regulowanego.

Znaczenie wykresu o szerokiej podstawie i wąskim szczycie jest wyjaśnione poniżej na przykładzie wykresu napięcia RMS. Przykładowo, napięcie posiada wartość znamionową 220 V z tolerancją ±15% (zakres tolerancji równy 187 ... 253V). Chwilowe napięcie RMS jest stale monitorowane przez analizator, który oblicza średnią z wartości mierzonych w 10-minutowych odcinkach czasu, a każda z tych średnich porównywana jest z zakresem tolerancji.

Limit równy 100% oznacza, że średnie z 10 minut muszą zawsze (tj. przez 100% czasu bądź ze 100% prawdopodobieństwa) znajdować się w wyznaczonym zakresie. Wykres zmieni barwę na czerwoną, jeżeli średnia z 10 minut wykroczy poza zakres tolerancji.

Regulowany limit np. 95% (tj. prawdopodobieństwo 95%) oznacza, że 95% średnich 10-minutowych musi znajdować się w zakresie tolerancji. Limit 95% jest mniej restrykcyjny niż limit 100%. Z tego powodu, związany z nim zakres tolerancji jest zwykle węższy. Dla 220 V może on wynosić ±10% (zakres tolerancji 198V ... 242V).

Słupki dla spadków/zaników/gwałtownych zmian napięcia/skoków są wąskie i przedstawiają liczbę przekroczeń dopuszczalnych limitów, do których doszło w całym okresie obserwacji. Liczba ta jest regulowana (np. do 20 spadków/tydzień). Słupek zmieni barwę na czerwoną jeżeli dojdzie do przekroczenia ustalonego limitu.

Możliwe jest wykorzystanie uprzednio ustawionego limitu bądź zdefiniowanie własnego. Przykładem uprzednio ustawionego limitu jest np. limit zgodny z normą PL-EN50160.

Parametr	Dostępne wykresy słupkowe	Limity	interwał
V rms	3, po jednym dla każdej fazy	Prawdopodobieństwo 100%: limit górny i dolny Prawdopodobieństwo x%: limit górny i dolny	10 minut
Harmoniczne	3, po jednym dla każdej fazy	Prawdopodobieństwo 100%: limit górny Prawdopodobieństwo x%: limit górny	10 minut
Migotanie	3, po jednym dla każdej fazy	Prawdopodobieństwo 100%: limit górny Prawdopodobieństwo x%: limit górny	2 godziny
Zapady i Skoki/Zaniki/ Gwałtowne zmiany napięcia	4, jeden dla każdego parametru odnoszącego się do wszystkich 3 faz	Dozwolona liczba zdarzeń	1/2 cyklu rms
Asymetria	1, odnosi się do wszystkich 3 faz	Prawdopodobieństwo 100%: limit górny Prawdopodobieństwo x%: limit górny	10 minut
Częstotliwość	1, pomiar dla napięcia odniesienia Wejście A/L 1	Prawdopodobieństwo 100%: limit górny i dolny Prawdopodobieństwo x%: limit górny i dolny	10 sekund

Denitora tabala przedatowie constitu meniterowanie jelecési operaji

Monitor	230V;50Hz;0	CTC1535	4 2017-06-15 07:45:34
		0:16:39	
22.30V	903.0%	MAX 22.30	V MIN 22.30V
			🔲 Limit
			Allow 20%
Vrms	lln.	- \\\\	-1_F

♦ Jakość energii - ekran monitorowania

Monitorowanie jakości energii można włączyć za pomocą przycisku **(**MONITOR **)** , możliwe jest przy tym uruchomienie natychmiastowe (Immediate) lub z opóźnieniem (Timed). Możliwe jest ustawienie kursora na wybranym wykresie słupkowym za pomocą przycisków kierunkowych. Mierzone dane wyświetlane w danym słupku pokazywane są w nagłówku ekranu.

Parametry jakości mocy, Napięcia rms, harmonicznych i migotania mają przypisany słupek dla

każdej fazy. Od lewej do prawej te trzy słupki odnoszą się do faz A (L1), B (L2) i C (L3). Parametry Zapadów / Zaników / Gwałtownych zmian napięcia / Skoków i Asymetrii / Częstotliwości mają pojedynczy słupek dla każdego parametru reprezentującego jakość w trzech fazach.

Poniższe znaki są używane na pasku tytułu

I : Ustawienie x% wartości granicznej

I : Wartość graniczna 100%

Szczegółowe dane pomiarowe dostępne są za pomocą przycisków funkcyjnych:

[F1] : Napięcie RMS: tabela zdarzeń, trendy.

[F2] : Harmoniczne: wykresy słupkowe, tabela zdarzeń, trendy.

[F3] : Migotanie: tabela zdarzeń, trendy.

[F4] : Zapady i Skoki/Zaniki/Gwałtowna zmiana napięcia/: tabela zdarzeń, trendy.

[F5] : Asymetria, częstotliwość: tabela zdarzeń, trendy.

♦ Tabela zdarzeń

Monitor	3P WYE		4 2018	-02-18 06:18:57
EVENTS : 1/49		0:34:21		
TIME	TYP	PE LEV	EL DU	RATION
2018/02/18 05	5:44:37 L1 C	0.0 O.	0	٥
2018/02/18 05	:44:37 L1 II	NT 0.0	0	- V
2018/02/18 05	5:44:37 L2 D	0.0 OIP	0	
2018/02/18 05	5:44:37 L2 II	NT 0.0	0	
2018/02/18 05	5:44:37 L3 D	0.0 OIP	0	
2018/02/18 05	5:44:37 L3 II	NT 0.0	0	
2018/02/18 05	54:36 L1 R	MS 0.0	0	
2018/02/18 05	5:54:36 L2 R	MS 0.0	0	
2018/02/18 05	5:54:36 L3 R	MS 0.0	0	
2018/02/18 05	5:54:36 L1 UN	IBAL 0.0	0	
2018/02/18 05	5:54:36 L1 T	HD 0.0	0	
2018/02/18 05	5:54:36 L2 T	HD 0.0	0	
2018/02/18 05	5:54:36 L3 T	HD 0.0	0	
		Trend	Selected All	Back

Tabela zdarzeń wyświetla zdarzenia, które wystąpiły w trakcie pomiaru wraz z czasem rozpoczęcia, fazą i czasem trwania. Zapisywanie zdarzeń:

- Zdarzenia V rms: zdarzenie jest zapisywane za każdym razem, gdy przekroczona zostanie dopuszczalna 10-minutowa łączna wartość RMS.
- Zdarzenia składowych harmonicznych: zdarzenie jest zapisywane za każdym razem, gdy przekroczona zostanie dopuszczalna wartość 10-minutowa łącznej wartości składowych harmonicznych bądź THD.
- Zdarzenia spadków/zaników/gwałtownej zmiany napięcia/skoków: są one zapisywane za każdym razem, gdy wartość dowolnego z tych elementów przekroczy wartość dopuszczalną.
- Zdarzenia Asymetrii i Częstotliwości: zdarzenie jest zapisywane za każdym razem, gdy przekroczona zostanie dopuszczalna 10minutowa łączna wartość RMS

Opis przycisków funkcyjnych:

- **[F3]** : Dostęp do ekranu Trendów
- **[F4]** : Przełączenie pomiędzy wszystkimi i wybranymi zdarzeniami.
- **[F5]** : Powrót do poprzedniego menu.

♦ Ekran wykresów słupkowych harmonicznych

Główny wyświetlacz monitorowania układu pokazuje najgorszą ze składowych harmonicznych dla każdej z trzech faz. Przycisk funkcyjny **[**F **]** wyświetla ekran z wykresami słupkowymi pokazującymi odsetek czasu, przez jaki każda faza przebywała w zakresie 25 składowych harmonicznych oraz łączne zniekształcenie harmoniczne (THD). Każdy wykres słupkowy posiada szeroką podstawę (przedstawiającą regulowany limit, np. 95%) i wąski szczyt (prezentujący limit równy 100%). Wykres słupkowy zmienia barwę na czerwoną (z neutralnej zielonej) kiedy składowa harmoniczna przekracza dopuszczalną wartość.

Opis przycisków funkcyjnych:

(F1): Wybór przypisania wykresu słupkowego do fazy **A (L1), B (L2)** lub **C (L3)**.

[F4] : Dostęp do Tabeli zdarzeń

[F5] : Powrót do poprzedniego menu.

Rozdział 4 Serwis i wsparcie

4.1 Gwarancja

Udzielamy rocznej gwarancji na konserwację lub wymianę od momentu wysyłki z powodu zweryfikowanego problemu dotyczącego jakości produktu. Z wyjątkiem tych wyjaśnień i opisu w karcie gwarancyjnej, firma nie udziela żadnej innej gwarancji, czy to wyraźnej czy też dorozumianej. W żadnym wypadku firma nie ponosi odpowiedzialności za bezpośrednie, pośrednie lub inne szkody wtórne.

Rozdział 5 Specyfikacje

5.1 Pomiar częstotliwości

Częstotliwość znamionowa	Zakres pomiaru	Rozdzielczość	Dokładność
50Hz	42,50~57,50 Hz	0,01Hz	±0,01Hz
60Hz	51,00~69,00 Hz	0,01Hz	±0,01Hz
400Hz	320~480Hz	0,01Hz	±0,01Hz

Uwaga: mierzone na wejściu napięcia odniesienia A/L1.

5.2 Wejście napięciowe

Liczba wejść	4 (3 fazy + neutralne)
Maks. ciągłe napięcie	1000Vrms
wejściowe	
Zakres napięcia	Do wyboru, 1V do 1000V zgodnie z IEC61000-4-
znamionowego	30
Maks. napięcie piku	6kV
impulsu	
Impedancja wejścia	4ΜΩ

5.3 Wejście prądowe

Liczba wejść	4 (3 fazy + neutralne)
Тур	Sonda prądowa, z wyjściem mV
Maks. napięcie wejściowe	10V
Zakres wejścia	Zgodnie z sondami prądowymi
Impedancja wejścia	100kΩ

5.4 Układ próbkowania

Rozdzielczość	8 kanałów 16-bitowych AD
Częstotliwość	163,84kS/s Typ. (Częstotliwość znamionowa),
pobierania próbek	próbka 8 kanałów synchronicznie
Próbkowanie RMS	4096 punktów dla 10/12 cykli (zgodnie z IEC
	61000-4-30)
PLL sync	4096 punktów dla 10/12 cykli (zgodnie z
-	IEC61000-4-7)

5.5 Tryby i parametry pomiaru

Tryb pomiaru	Mierzone parametry
Oscyloskop	Vrms、Arms、Vkursor、Akursor、Hz
Napięcie/Prąd/Częstotliwość	Vrms、Vpk、Arms、Apk、CF、 Hz
Zapady i przepięcia	V rms1 /2, A rms1 /2, zapisują do 1000

	zdarzeń razem z datą, godziną, czasem trwania, skalą i oznaczeniem fazy, pozwalając przy tym na ustalenie wartości progowej.
Harmoniczne	1-100, napięcie harmoniczne, napięcie THD, prąd harmoniczny, prąd THD, napięcie interharmoniczne, prąd interharmoniczny
Moc i energia	W、VA、var、PF、cosΦ、tanΦ、Vrms、 Arms、 kWh、kVAh、kvarh
Migotanie	Pinst、Pst、Plt
Asymetria	Vneg, Vzero, Aneg, Azero, Vfund, Afund, Hz, kąt fazy V, kąt fazy A
Stany przejściowe	Vrms, Vkursor
Prąd rozruchowy	Prąd rozruchu, czas trwania rozruchu, A rms1/2, V rms1/2
Monitorowanie układów	Vrms, Arms, Napięcie harmoniczne, Napięcie łącznego zniekształcenia harmonicznego, Plt, Vrms1/2, Arms1/2, Vneg, Hz, Skoki, Spadki, Zaniki, Gwałtowna zmiana napięcia. Wszystkie parametry są mierzone jednocześnie zgodnie z normą PL- EN50160.
Rejestrator	Pozwala na wybranie większej liczny parametrów i zapisywanie w określonych odstępach czasu.

5.6 Zakres, rozdzielczość i dokładność pomiaru

Napięcie/Prąd/ Częstotliwość	Zakres pomiaru	Rozdzielczość	Dokładność
Vrms (AC+DC)	1~120Vrms 120~400 Vrms 400~1000Vrms	0,001Vrms 0,01Vrms 0,1Vrms	±0,1% napięcia znamionowego
Vpk	1~1400Vpk	0,01Vpk	±0,5% napięcia znamionowego
V(CF)	1,0~>2,8	0,01.	±5%
Arms (nie dotyczy błędu zacisku prądowego) 10mV/A 1mV/A 65mV/1000A(AC)	0~150A 1~2000A 10~6000A	0,01A 0,01A 0,01A	±0,1%±0,1A ±0,1%±0,1A ±0,1%±0,2A
A(CF)	1~10	0,01	±5%

Częstotliwość			
znamionowa 50Hz	10 5.57 5		
Czestotliwość	42,5~57,5		
znamionowa 60Hz	51~69	0,01Hz	±0,01Hz
Zhanionowa ooniz	320~480	0.01Hz	±0.01Hz
Częstotliwość		-,	,
znamionowa 400Hz			

Zapady i przepięcia	Zakres pomiaru	Rozdzielczość	Dokładność
Vrms1/2	0~200% napięcia znamionowego	0.01Vrms	±0,2%
Arms1/2	Zgodnie z sondami prądowymi	0,01A	±1%
Wartość progowa	Wartość progowa napięcia znamiono Rodzaje wykrywar Gwałtowna zmiana	jest regulowana zgo wego nych zdarzeń: Spa a napięcia.	odnie z odsetkiem dki, Skoki, Zaniki,
Czas trwania	godzin-minut- sekund- mikrosekund	0,5 cyklu	1 okres

Harmoniczne	Zakres	Rozdzielczość	Dokładność
Rząd harmonicznej (400Hz) Rząd interharmonicznej (400Hz) Rząd harmonicznej (50/60Hz) Rząd interharmonicznej (50/60Hz) Napięcie harmoniczne %f Napięcie harmoniczne %r Prąd harmoniczny %f Prąd harmoniczny %r SNX Częstotliwość Faza	1~12 Lp. 1~100 0~99 0,0~100,0% 0,0~100,0% 0,0~100,0% 0,0~100,0% 0,0~100,0% 0,0~100,0% 0,0~100,0%	0,01% 0,01% 0,01% 0,01% 0,01% 0,01Hz 0,1°	±0,1%±n×0,1% ±0,1%±n×0,4% ±0,1%±n×0,1% ±0,1%±n×0,4% ±2,5% 0,1Hz ±n×0,1°

Napięcie bezwzględne	0~1000V	0,01V	±1%odczytu(harmoniczne>1%wartościznamionowej)±0,05%odczytu(harmoniczne<1%wartościznamionowej)
Prąd bezwzględny	0~6000A	0,01A	±1%odczytu(harmoniczne>3%wartościznamionowej)±0,05%odczytu(harmoniczne<3%

Moc i energia	Zakres pomiaru	Rozdzielczość	Dokładność
P, S, Q1,	Max6000MW	0,01kW	±1%±10 znaków
PF	0~1	0,01	±0,1%
cosΦ	0~1	0,01.	±0,1%
kWh, kVAh,	Zależnie od skalowania sondy i		±1%±10 znaków
kvarh	znamionowego V		
Migotanie	Zakres pomiaru	Rozdzielczość	Dokładność
(50/60Hz)			
Pst (10 minut) Plt (2 godziny)	0,00~20,00	0,01	±5%

Asymetria	Zakres pomiaru	Rozdzielczość	Dokładność
Asymetria	0,0~20,0%	0,1%	±0,1%
napięcia	0,0~20,0%	0,1%	±1%
Asymetria prądu	-360°~ 0°	0,1°	±0,1°
Faza napięcia	-360°~ 0°	0,1°	±0,5°
Faza prądu			

Szybka zmiana napięcia	Zakres pomiaru	Rozdzielczość	Dokładność
Vpk Vrms Minimalny czas testu Częstotliwość pobierania próbek	±6000Vpk 10~1000Vrms 6.5μs 163,84kS/s	0,01V 0,01V	±15% ±2,5%

Prąd rozruchowy	Zakres pomiaru		Rozdzielczość	Dokładność	
Ramiona	Zgodnie sondami prądowymi	Z	0,01A	±1%±5 znaków	
Czas trwania rozruchu	1~32 i regulowany	min	10ms	±20ms	

5.7 Kombinacje okablowania

1P+NEUTRAL	Jedna faza z przewodem neutralnym			
1P Split Phase	Faza rozdzielona			
1P IT NO	Układ z pojedynczą fazą z dwoma napięciami			
NEUTRAL	fazowymi bez przewodu neutralnego			
3P WYE	Układ 3-fazowy 4-przewodowy, typ Y			
3P DELTA	Układ delta 3-fazowy 3-przewodowy (Delta)			
3P IT	3-fazowy typ Y bez przewodu neutralnego			
3P HIGH LEG	Układ delta 3-fazowy 4-przewodowy z mocowanym			
	centralnie biegunem high leg			
3P OPEN LEG	Układ 3-przewodowy typu otwarta delta z dwoma			
	uzwojeniami transformatora			
2-ELEMENT	Układ 3-fazowy 3-przewodowy bez czujnika prądu na			
	fazie L2/B (metoda dwóch mierników mocy)			
2.5-ELEMENT	Układ 3-fazowy 4-przewodowy bez czujnika napięcia			
	na fazie L2/B			

5.8 Cechy ogólne

Interfejs	
Interfejs USB-Host	Kopiowanie zapisanego pliku na komputer z dysku U, a następnie jego analiza za pomocą oprogramowania komputerowego.
Interfejs LAN	Dla zdalnego sterowania analizatorem i przekazu danych pomiaru.
Ekran	Kolorowa matryca LCD TFT
Rozmiar	5,6 cala

Rozdzielczość	640×480
Jasność	Regulowana

Pamięć	
Pamięć flash	1G
Micro SD	Standardowa 32G

Obudowa	
Kroplo i pyłoszczelna	Stopień ochrony IP53. Stopień ochrony IP odnosi się do samej obudowy i nie oznacza, że Produkt powinien być używany w pobliżu niebezpiecznych napięć w mokrych środowiskach.

Normy		
Metoda pomiaru	IEC61000-4-30 klasa A	
Monitorowanie jakości		
mocy	EN50160	
Migotanie	IEC61000-4-15	
Harmoniczne	IEC61000-4-7	
Metoda pomiaru poboru mocy	IEEE1459	

Warunki	
otoczenia	
Temperatura	0°C~ 45°C
pracy	
Temperatura	-10°C~45°C
przechowywania	
Wilgotność	Wilgotność względna 90%
powietrza	

Bezpieczeństwo		
Zgodny z		IEC61010-1
		Poziom bezpieczeństwa: 600V CAT IV 1000V
		CAT III
		Stopień zanieczyszczenia: 2
Maksymalne napięcie		600V CAT IV 1000V CAT III
na wejściu napięcia		
Maksymalne napięcie		10V
na wejściu prądu		
Mechaniczne		
Wymiary	270mm × 190mm×66mm	
Masa 2 kg		

Мос	
Wejście zasilacza	AC 100-240V 50/60Hz
Wyjście zasilacza	DC 12V 2A
Bateria	Bateria litowa 7,4V 5200mAh
Czas pracy na baterii	>8 godzin (jasność ekranu na poziomie 3)
Czas ładowania baterii	6 godzin

5.9 Specyfikacja opcjonalnych sond prądowych

Model	Zakres	Współczynnik	Dokładność	Rozmiar
				mm
KLC8C-5A	AC:5A	10mV/A	0,2%	Ф8
CTC0080	AC:50A	10 mV/A	0,2%	Ф8
CTC0130	AC:100A	1 mV/A	0,2%	Ф13
CTC1535	AC:1000A	1 mV/A	1,0%	Ф52
ETCR035AD	AC/DC:	1 mV/A	±4,0%	30x35
	1000A			
SY-1500A	AC:1500A	100 mV/1000A	±0,5%+(1% błąd	Ф110
			położenia)	
PY-3000A	AC:3000A	65 mV/1000A	1.0%+(2% błąd	Ф160
			położenia)	
PY-5000A	AC:3000A	50 mV/1000A	1.0%+(2% błąd	Ф143
			położenia)	
SY-6000A	AC:6000A	65mV/1000A	±1.0%+(2% błąd	Φ250
			położenia)	

Rozdział 6 Kody wykonania

Przenośny analizator paramerów sieci NP45 -	Х	ΧХ	Х	Х
Wyposażenie dodatkowe:				
brak	0			
4 szt. cewek Rogowskiego PY 3000 A	1			
4 szt. cewek Rogowskiego PY 5000 A	2			
4 szt. cęg prądowych KLC8C 5 A	3			
4 szt. cęg prądowych CTC0080 50 A	4			
4 szt. cęg prądowych CTC0130 100 A	5			
4 szt. cęg prądowych CTC1535 1000 A	6			
4szt. cęg prądowych ETCR035AD 1000A ac/dc	7			
4szt. cewek Rogowskiego SY 1500A	8			
4szt. cewek Rogowskiego SY 6000A	9			
Wykonanie:				
standardowe		00		
specjalne*		ΧХ		
Wersja językowa:				
Wielojęzyczna (polska/angielska)			М	
Inna*			Х	
Próby odbiorcze:				
bez dodatkowych wymagań				0
z dodatkowym atestem kontroli jakości				1
ze świadectwem wzorcowania				2
wg uzgodnień z odbiorcą*				Х

* tylko po uzgodnieniu z producentem

LUMEL S.A.

ul. Sulechowska 1, 65-022 Zielona Góra, Poland tel.: +48 68 45 75 100, fax +48 68 45 75 508 www.lumel.com.pl

Informacja techniczna: tel.: (68) 45 75 106, 45 75 180, 45 75 260 e-mail: sprzedaz@lumel.com.pl

Realizacja zamówień: tel.: (68) 45 75 207, 45 75 209, 45 75 218, 45 75 341 fax.: (68) 32 55 650

Pracownia systemów automatyki: tel.: (68) 45 75 228, 45 75 117

Wzorcowanie:

tel.: (68) 45 75 161 e-mail: laboratorium@lumel.com.pl NP45-07